
Introduction : Polynomial Functions
A polynomial function involves addition of nonnegative integer powers of . For example, . The nonpolynomial functions, such as can be expressed as polynomial functions using Taylor series and Maclaurin series. These series generally contain infinitely many terms of the form with each term having a coefficient. The coefficients are determined by a methodology.
Note that the nonpolynomial functions are not strictly polynomial functions (as the name suggests); but are expressed using infinite series.

Taylor’s Theorem and Series
The series was formulated by James Gregor, a British astronomer and has been named after Brook Taylor, who introduced it formally. Gregor had obtained the Taylor series of several trigonometric functions.
Let be a function of , which is infinitely differentiable at . Then, is given by
The th term of the series is given by
The proof of this formulation is known as Taylor’s theorem.
We say that, is expanded about .
Note that we have used both successive differentiation and infinite series in defining Taylor series.

Maclaurin’s Series
When the value of is , then Taylor’s series becomes Maclaurin’s series. So, the Maclaurin’s representation will be

Maclaurin’s Series for Standard Functions
I) Polynomial Functions : The function itself is its Maclaurin representation
II) Exponential Function :
III) Trigonometric and Hyperbolic Functions :
The and series, when obtained, tell us why is equal to . (Check!)
The series for and can be obtained easily by using their definitions. Given below are .
IV) General Functions :
Above expansion is made up of a sequence, which is a geometric progression.
V) The Binomial Theorem :
The binomial theorem, which was proved earlier using mathematical induction, can also be proved (rather, gets proved) using Maclaurin series.

Additional Useful Points
Successive differentiation is to be extensively used while solving problems. This is evident from the statement of the theorem itself.
I) Logarithmic Differentiation – A technique of differentiation, involving powers of .
II) If the function is getting complicated after differentiation, it is to be modified to get th derivative. This modification will be either a substitution or trigonometric substitution or actual division etc.
Then,
This can easily be expanded using series of and .
IV) Using Taylor’s theorem, we can wellapproximate a function using its Taylor series (as we did using Fourier series). If the sequence is convergent, then numerical values of functions can be computed up to any degree of accuracy.