Indefinite Integration : Simple Problems

In this blog, few simple problems on indefinite integration have been solved. All you need to know is the basic formulas for integration (the opposite of differentiation) and the algebra of integration of functions, i.e. how to integrate the addition and subtraction of 2 functions and the integration of simple composite functions of the form f(ax+b).

\int 3sec^2(x) - \frac {4}{x} + \frac {1}{x \sqrt {x}} - 7 \ dx

= \int 3sec^2(x)dx - \int \frac {4}{x}dx + \int \frac {1}{x \sqrt {x}}dx - \int 7 dx

= 3 \int sec^2(x)dx - 4 \int \frac {1}{x} dx + \int x^{-3/2} dx - 7 \int 1 \ dx

= 3 tan(x) - 4 ln(x) + \frac {x^{- \frac {3}{2} +1 }}{- \frac {3}{2} + 1} - 7x + C

 {= 3 tan(x) - 4 ln(x) - \frac {2}{\sqrt {x}} - 7x + C}


\int \frac {1}{(7x-5)^3} - \frac {1}{\sqrt {5x-4}} \ dx

= \int (7x-5)^{-3}dx - \int (5x-4)^{-1/2} dx

 = \frac {1}{7} \frac {(7x-5)^{-3+1}}{-3+1} - \frac {1}{5} \frac {(5x-4)^{- \frac {1}{2} + 1}}{- \frac 1 2 + 1} + C

 {= \frac {-1}{14} \frac {1}{(7x-5)^2} - \frac {2}{5} \sqrt {5x-4} + C}


 \int \frac {1}{\sqrt {5x+3} - \sqrt {5x+1}} dx

 = \int \frac {\sqrt {5x+3} + \sqrt {5x+1}}{5x+3 - (5x+1)} dx

 = \int \frac {\sqrt {5x+3} + \sqrt {5x+1}}{2}

 = \frac {1}{2} \int \sqrt {5x+3}dx + \frac {1}{2} \int \sqrt {5x+1} dx

 = \frac {1}{2} \cdot \frac {1}{5} \cdot (5x+3)^{3/2} \cdot \frac {2}{3} + \frac {1}{2} \cdot \frac {1}{5} \cdot (5x+1)^{3/2} \cdot \frac {2}{3} + C

  {= \frac {(5x+3)^{3/2}}{15} + \frac {(5x+1)^{3/2}}{15} + C}


 \int \frac {3x^2-2x+5}{x^{3/2}} dx

 = \int \frac {3x^2}{x^{3/2}} dx - \frac {2x}{x^{3/2}} dx + \int \frac {5}{x^{3/2}} dx

 = 3 \int x^{2 - \frac 3 2} dx - 2 \int x^{1 - \frac 3 2} dx + 5 \int x^{-3/2} dx

 = 3 \int {x^{1/2}} dx - 2 \int x^{-1/2} dx + 5 \int x^{-3/2} dx

  {= 2 x^{3/2} - 4 \sqrt {x} - \frac {10}{\sqrt {x}} + C}

Advertisements

2 thoughts on “Indefinite Integration : Simple Problems”

    1. Hey thanks Rohan! The crucial part in this problem is to rationalize the denominator of the integrand. So, you should multiply and divide by \sqrt {5x+3} + \sqrt {5x+1}, which is done in the very step. The radical sign goes when you square and 5x terms go. Hence 2 in the denominator.

      Liked by 1 person

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s